International Rectifier

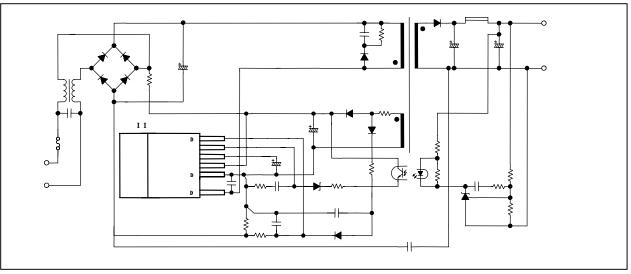
IRIS-W6754

Features

- 6-pin SIP type full molded package, optimum IC for low-height SMPS, distance between high and low voltage pins is 1.8 mm with pin elimination.
- Oscillator is provided on the monolithic control with adopting On-Chip Trimming Technology
- Small temperature characteristics variation by adopting a comparator to compensate for temperature on the control part.
- Low start-up circuit current (100uA max)
- •Avalanche energy guaranteed MOSFET with high VDSS
 - > The built-in power MOSFET simplifies the surge absorption circuit since the MOSFET guarantees the avalanche energy.
 - No VDSS de-rating is required.
- Built-in constant voltage drive circuit
- Built-in step drive circuit
- Built-in low frequency PWM mode (22 kHz)
- · UVLO Burst Standby
- Two operational modes by auto switching functions according to load
 - > For middle~heavy load operation : QR mode
 - > For light~middle load operation : 1 Bottom Skip mode
- Various kinds of protection functions
 - ➤ Pulse-by-Pulse Overcurrent Protection (OCP)
 - ➤ Overvoltage Protection with Latch mode (OVP)
 - ➤ Overload Protection with Latch mode (OLP)
 - > The maximum limit of on-time

INTEGRATED SWITCHER

Package Outline


Key Specifications

	MOSFET	RDS(ON)		Pout(W)
Type	VDSS(V)	MAX	AC input(V)	Note 1
			230 15%	160
IRIS-W6754	650		85 to 264	100

Description

IRIS-W6754 is a hybrid IC consisting of a power MOSFET and a controller IC, designed for Quasi-Resonant (including low frequency PWM) fly-back converter type SMPS (Switching Mode Power Supply) applications. This IC realizes high efficiency, low noise, downsizing and standardizing of a power supply system reducing external component count and simplifying the circuit design.

Typical Connection Diagram

Note 1:

The Pout (W) represents the thermal rating at Quasi-Resonant operation, and the peak power output is obtained by approximating 120 to 140 % of the above listed value. When the output voltage is low, and the ON-duty is narrow, the Pout (W) shall become lower than that of the above.

www.irf.com

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to terminals stated, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

		Terminal			
Symbol	Definition	S	Max. Ratings	Units	Note
IDpeak	Drain Current * 1	1 - 3	15	A	Single Pulse
I_{DMAX}	Maximum switching current *2	1 - 3	15	A	Ta=-20~+125
E _{AS}	Single pulse avalanche energy *3	1 - 3	292	mJ	Single Pulse VDD=99V,L=20mH IL=5.1A
Vcc	Input voltage for control part	4 - 3	35	V	
V_{SSOLP}	SS/OLP pin voltage	5 - 3	-0.5 ~ 6.0	V	
I_{FB}	FB pin inflow current	6- 3	10	mA	
V_{FB}	FB pin voltage	6- 3	-0.5 ~ 9.0	V	within the limits of IFB
Vocpbd	O.C.P/F.B pin voltage	7-3	-1.5 ~ 5.0	V	
P _{D1}	Power dissipation of MOSFET *4	1 - 3	28.0	W	With infinite heatsink Without heatsink
PD2	Power dissipation for control part (MIC)	4 - 3	0.8	W	Specified by Vcc x Icc
TF	Internal frame temperature in operation	-	-20 ~ +115		Refer to recommended operating temperature
Тор	Operating ambient temperature	-	-20 ~ +115		
Tstg	Storage temperature	-	-40 ~ +125		
Tch	Channel temperature	-	150		

^{*1} Refer to MOS FET A.S.O. curve

www.irf.com

^{*2} Maximum switching current

The maximum switching current is the Drain current determined by the drive voltage of the IC and threshold voltage (Vth) of the MOS FET.

^{*3} Refer to MOS FET Tch-EAS curve

^{*4} Refer to MOS FET Ta-PD1 curve

Electrical Characteristics (for Control IC)

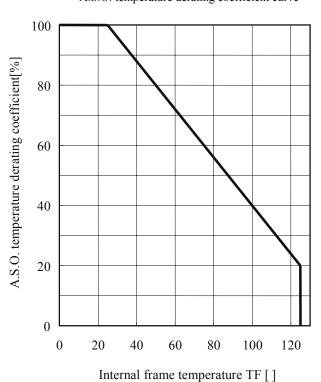
Electrical characteristics for control part (Ta=25 , Vin=20V,unless otherwise specified)

Symbol	D.C.idan	Terminals	Ratings			T1 .4	NT 4
Symbol	Definition		MIN	TYP	MAX	Units	Note
Power Supply	y Start-up Operation						
V _{CC(ON)}	Operation Start Voltage	4 - 3	16.3	18.2	19.9	V	Vcc=0 19.9V
V _{CC(OFF)}	Operation Stop Voltage	4 - 3	8.8	9.7	10.6	V	Vcc=19.9 8.8 V
I _{CC(ON)}	Circuit Current in Operation	4 - 3	=	-	6	mA	-
I _{CC(OFF)}	Circuit Current in Non-Operation	4 - 3	-	-	100	μΑ	Vcc=15V
fosc	Oscillation Frequency	1 - 3	19	22	25	kHz	-
V _{SSOLP(SS)}	Soft Start Operation Stop Voltage	5 - 3	1.1	1.2	1.4	V	-
I _{SSOLP(SS)}	Soft Start Operation Charging Current	5 - 3	-710	-550	-390	μΑ	-

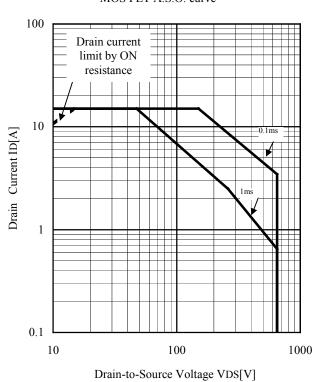
Normal Operation							
V _{OCPBD(BS1)}	Bottom-Skip Operation Threshold Voltage1	7 - 3	-0.72	-0.665	-0.605	V	-
V _{OCPBD(BS2)}	Bottom-Skip Operation Threshold Voltage2	7 - 3	-0.485	-0.435	-0.385	V	-
V _{OCPBD(LIM)}	Overcurrent Detection Threshold Voltage	7 - 3	-0.995	-0.94	-0.895	V	-
I _{OCPBD}	OCP/BD Pin Outflow Current	7 - 3	-250	-100	-40	μА	-
V _{OCPBD(TH1)}	Quasi-Resonant Operation Threshold Voltage 1	7 - 3	0.28	0.4	0.52	V	-
V _{OCPBD(TH2)}	Quasi-Resonant Operation Threshold Voltage 2	7 - 3	0.67	0.8	0.93	V	-
V _{FB(OFF)}	FB Pin Threshold Voltage	6 - 3	1.32	1.45	1.58	V	-
I _{FB(ON)}	FB Pin Inflow Current (Normal Operation)	6 - 3	600	1000	1400	μΑ	-

Electrical Characteristics (for Control IC), Contd.

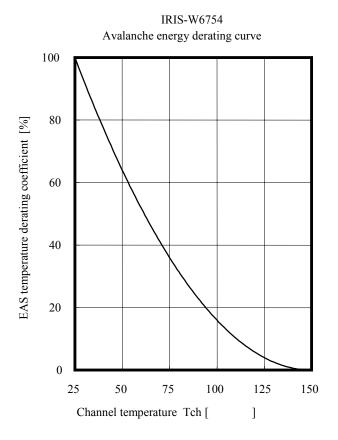
Stand-by Operation							
$V_{CC(S)}$	Stand-by Operation Start Voltage	4 - 3	10.3	11.1	12.1	V	Vcc=0 12.2V
V _{CC(SK)}	Stand-by Operation Start Voltage Interval	4 - 3	1.1	1.35	1.65	V	-
$I_{CC(S)}$	Stand-by Non-Operation Circuit Current	4 - 3	-	20	56	μΑ	Vcc=10.2V
$I_{FB(S)}$	FB Pin Inflow Current (Stand-by)	6 - 3	-	4	14	μΑ	Vcc=10.2V
$V_{FB(S)}$	Stand-by Operation FB Pin Threshold Voltage	6 - 3	0.55	1.1	1.5	V	Vcc=12.2V
T _{ON(MIN)}	Minimum ON Time	1 - 3	0.5	0.8	1.1	μSec	-
Protection Opera	ation						
$T_{ON(MAX)}$	Maximum ON Time	1 - 3	27.5	32.5	39	μSec	-
V _{SSOLP(OLP)}	OLP Operation Threshold Voltage	5 - 3	4	4.9	5.8	V	-
I _{SSOLP(OLP)}	OLP Operation Charging Current	5 - 3	-16	-11	-6	μΑ	-
V _{CC(OVP)}	OVP Operation Voltage	4 - 3	25.5	27.7	29.9	V	Vcc=0→29.9V
I _{CC(H)}	Latch Circuit Holding Current *5	4 - 3		45	140	μА	$Vcc=29.9 \rightarrow V_{CC(OFF)}-0.3V$
VCC(La.OFF)	Latch Circuit Release Voltage *5	4 - 3	6	7.2	8.5	V	Vcc=29.9→6V

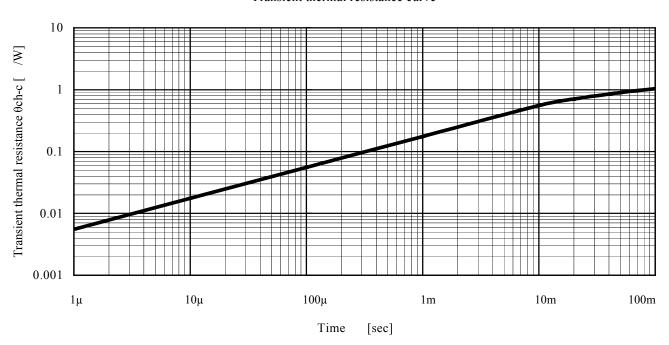

^{*5} The latch circuit means a circuit operated O.V.P and O.L.P.

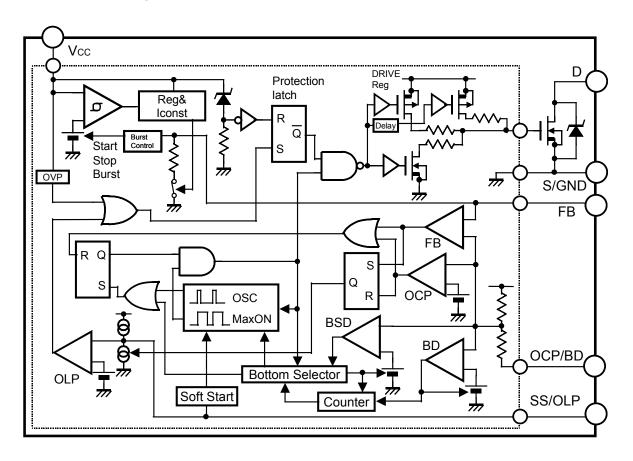
^{*6} The current ratings are based on those of the IC, and plus(+) represents sink and minas(-) represents source.


Electrical characteristics for MOSFET (Ta=25 deg C)

	Definition	Terminals		Ratings		Units	Note
Symbol			MIN	TYP	MAX		
V _{DSS}	Drain-to-Source breakdown voltage	1 - 3	650	-	-	V	ID=300μA
I_{DSS}	Drain leakage current	1 - 3	-	-	300	μА	Vds=650V
R _{DS(ON)}	On-resistance	1 - 3	-	-	0.96		ID=1.9A
tf	Switching time	1 - 3	-	-	400	nSec	-
ch-F	Thermal resistance	-	-	-	1.6	/W	Between channel and internal frame

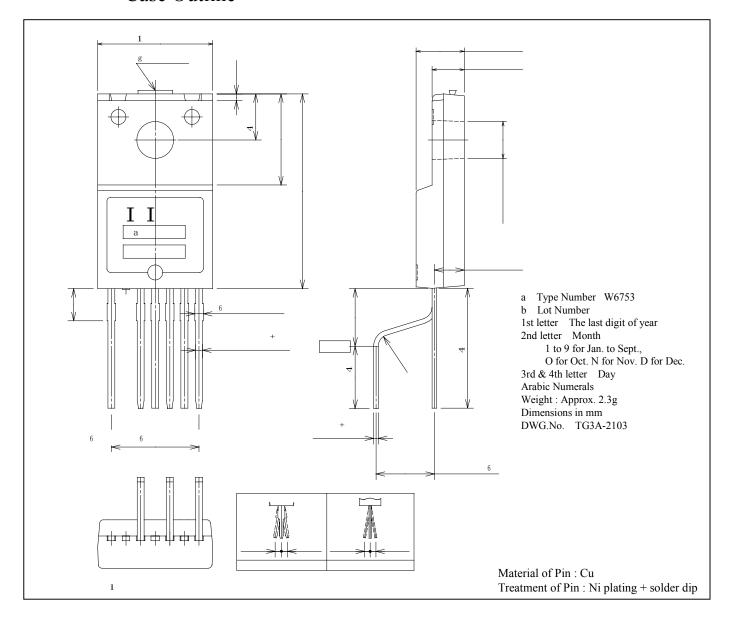

IRIS-W6754
A.S.O. temperature derating coefficient curve


IRIS-W6754 MOS FET A.S.O. curve


MOSFET Ta-PD1 Curve 30 25 With infinite heatsink Power dissipation PD1[W] 20 15 10 Without 5 heatsink 0 20 100 160 0 40 60 80 120 140 Ambient temperature Ta[]

IRIS-W6754 Transient thermal resistance curve

Block Diagram



Pin Designation

Pin Assignments	Pin No.	Symbols	Descriptions	Functions
	1	D	Drain pin	MOSFET drain
	3	S/GND	Source /Ground pin	MOSFET Source / Ground
	4	Vcc	Power supply pin	Input of power supply for control circuit
	5	SS/OLP	Delay at Overload /Soft Start set up Pin	Overload Protection and Soft Start Operation Time set up
	6	FB	Feedback pin	Constant Voltage Control Signal Input, Burst(intermittent) mode Oscillation Control
D	7	OCP/BD	Overcurrent Protection Input / Bottom Detection Pin	Overcurrent Detection Signal Input /Bottom Detection Signal Input

International **TOR** Rectifier

Case Outline

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC FAX: (310) 252-7903

Visit us at www.irf.com for sales contact information.