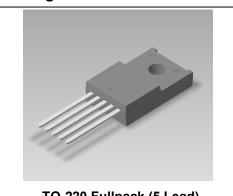
International IR Rectifier

Data Sheet No. PD 96947A


IRIS-G6623

Features

- · Oscillator is provided on the monolithic control with adopting On-Chip-Trimming technology.
- Small temperature characteristics variation by adopting a comparator to compensate for temperature on the control part.
- Low start-up circuit current (100uA max)
- Built-in Active Low-Pass Filter for stabilizing the operation in case of light
- Avalanche energy guaranteed MOSFET with high VDSS
 - The built-in power MOSFET simplifies the surge absorption circuit since the MOSFET guarantees the avalanche energy.
 - · No VDSS de-rating is required.
- Built-in constant voltage drive circuit
- · Built-in soft drive circuit
- Built-in low frequency PRC mode (≒20kHz)
- · Various kinds of protection functions
 - Pulse-by-pulse Overcurrent Protection (OCP)
 - Overvoltage Protection with latch mode (OVP)
 - Thermal Shutdown with latch mode (TSD)

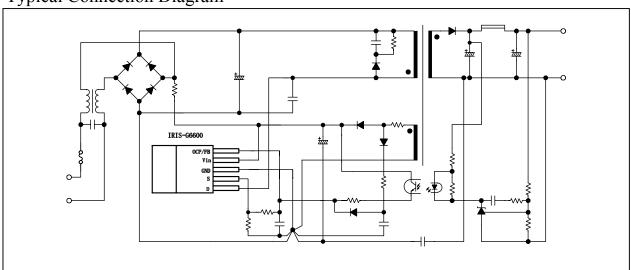
INTEGRATED SWITCHER

Package Outline

TO-220 Fullpack (5 Lead)

Key Specifications

	MOSFET	RDS(ON)		Pout(W)
Type	VDSS(V)	MAX	AC input(V)	Note 1
			$100 \pm 15\%$	75
IRIS-G6623	450	1. 3 Ω	$120 \pm 15\%$	100

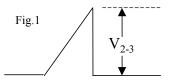

Note 1: The Pout (W) represents the thermal rating at Quasi-Resonant Operation, and the peak power output is obtained by approximately 120 to 140% of the above listed. When the output voltage is low and ON-duty is narrow, the Pout (W) shall become lower than that of above.

Descriptions

IRIS-G6623 is a hybrid IC consists from power MOSFET and a controller IC, designed for Quasi-Resonant (including low frequency PRC) fly-back converter type SMPS (Switching Mode Power Supply) applications. This IC realizes high efficiency, low noise, downsizing and standardizing of a power supply system reducing external components count and simplifying the circuit designs.

(Note). PRC is abbreviation of "Pulse Ratio Control" (On-width control with fixed OFF-time).

Typical Connection Diagram



Absolute Maximum Ratings (Ta=25°C)

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to terminals stated, all currents are defined positive into any lead. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Terminals	Max. Ratings	Units	Note
IDpeak	Drain Current *1	1-2	12	A	Single Pulse
					V2-3=0.78V
IDMAX	Maximum switching current *5	1-2	12	A	Ta=-20~+125℃
					Single Pulse
					VDD=99V, L=20mH
Eas	Single pulse avalanche energy *2	1-2	157	mJ	IL peak=3.5A
Vin	Input voltage for control part	4-3	35	V	
Vth	O.C.P/F.B Pin voltage	5-3	6	V	
			24	W	With infintite heatsink
P _{D1}	Power dissipation for MOSFET *3	1-2	1.5	W	Without heatsink
	Power dissipation for control part				Specified by
PD2	(Control IC) *4	4-3	0.8	W	Vin×Iin
	Internal frame temperature				Refer to recommended
TF	in operation	-	-20 ~ +125	$^{\circ}$	operating temperature
Тор	Operating ambient temperature	-	-20 ~ +125	$^{\circ}$	
Tstg	Storage temperature	-	-40 ~ +125	$^{\circ}$	
Tch	Channel temperature	-	150	$^{\circ}$	

The maximum switching current is the Drain current determined by the drive voltage of the IC and threshold voltage (Vth) of MOS FET. Therefore, in the event that voltage drop occurs between Pin 2 and Pin 3 due to patterning, the maximum switching current decreases as shown by V_{2-3} in Fig.1 Accordingly please use this device within the decrease value, referring to the derating curve of the maximum switching current.

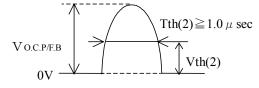
^{*1} Refer to MOS FET A.S.O curve

^{*2} MOS FET Tch-EAS curve

^{*3} Refer to MOS FET Ta-PD1 curve

^{*4} Refer to TF-PD2 curve for Control IC (See page 5)

^{*5} Maximum switching current.


Electrical Characteristics (for Control IC)

Electrical characteristics for control part (Ta=25°C, Vin=18V,unless otherwise specified)

		Ratings				Test
Symbol	Definition	MIN	TYP	MAX	Units	Conditions
Vin(ON)	Operation start voltage	14.4	16	17.6	V	Vin=0→17.6V
Vin(OFF)	Operation stop voltage	9	10	11	V	Vin=17.6→9V
Iin(ON)	Circuit current in operation	-	-	30	mA	-
Iin(OFF)	Circuit current in non-operation	-	-	100	μΑ	Vin=14V
TOFF(MAX)	Maximum OFF time	45	-	55	μsec	-
	Minimum time for input of quasi					
Tth(2)	resonant signals *6	-	-	1	μsec	-
TOFF(MIN)	Minimum OFF time *7	-	-	1.5	μsec	-
Vth(1)	O.C.P/F.B Pin threshold voltage 1	0.68	0.73	0.78	V	-
Vth(2)	O.C.P/F.B Pin threshold voltage 2	1.3	1.45	1.6	V	
IOCP/FB	O.C.P/F.B Pin extraction current	1.2	1.35	1.5	mA	-
Vin(OVP)	O.V.P operation voltage	20.5	22.5	24.5	V	Vin=0→24. 5V
Iin(H)	Latch circuit sustaining current *8	-	-	400	μA	Vin=24.5→8. 5V
Vin(La.OFF)	Latch circuit release voltage *8	6.6	-	8.4	V	Vin=24.5→6. 6V
Tj(TSD)	Thermal shutdown operating temperature	140	-	-	$^{\circ}\!\mathbb{C}$	-

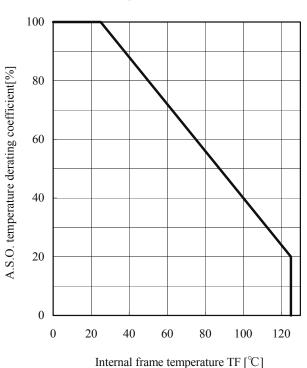
^{*6} Recommended operating conditions

Time for input of quasi resonant signals For the quasi resonant signal inputted to OCP/FB Pin at the time of quasi resonant operation, the signal shall be wider than Tth(2).

^{*7} The minimum OFF time means Toff width at the time when the minimum quasi resonant signal is inputted.

Electrical Characteristics (for MOSFET)

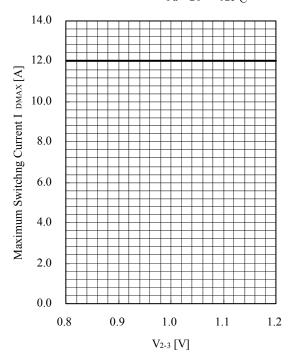
(Ta=25°C) unless otherwise specified

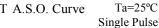

		Ratings					
Symbol	Definition	MIN	TYP	MAX	Units	Test Conditions	
						ID=300μA	
Vdss	Drain-to-Source breakdown voltage	450	-	-	V	V3-2=0V(short)	
						VDS=450V	
IDSS	Drain leakage current	-	-	300	μΑ	V3-2=0V(short)	
						V3-2=10V	
RDS(ON)	On-resistance	-	-	1.3	Ω	ID=1.5A	
tf	Switching time	-	-	250	nsec	-	
						Between channel and	
heta ch-F	Thermal resistance	_	-	2.3	°C/W	internal frame	

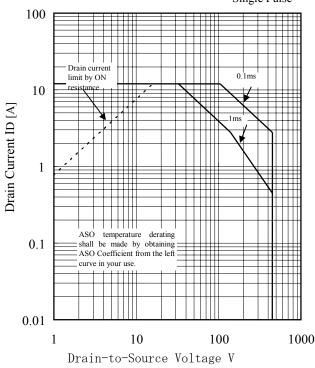
^{*8} The latch circuit means a circuit operated O.V.P and T.S.D.

IRIS-G6623

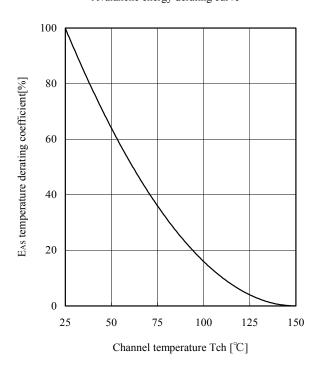
International **TOR** Rectifier

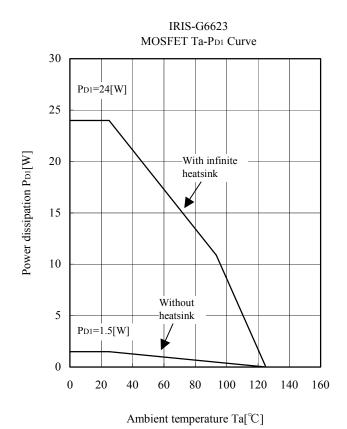

IRIS-G6623
A.S.O. temperature derating coefficient curve

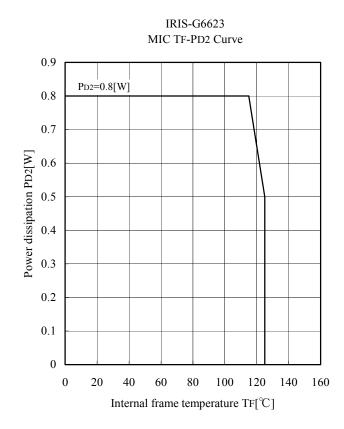

•

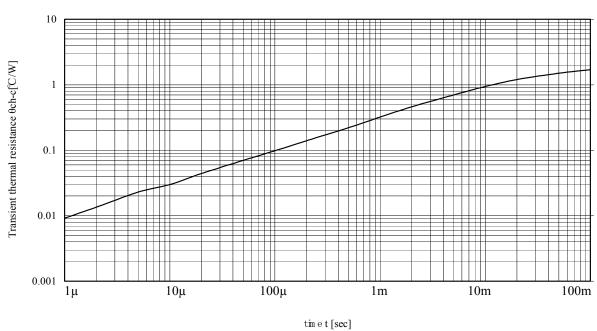

IRIS-G6623

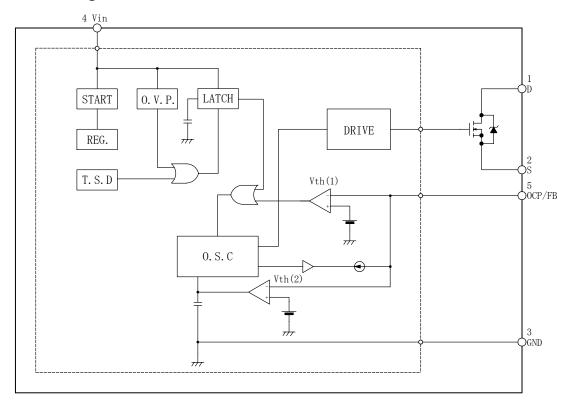
Maximum Switching current derating curve $Ta = -20 \sim +125 \circ c$




IRIS-G6623 MOSFET A.S.O. Curve



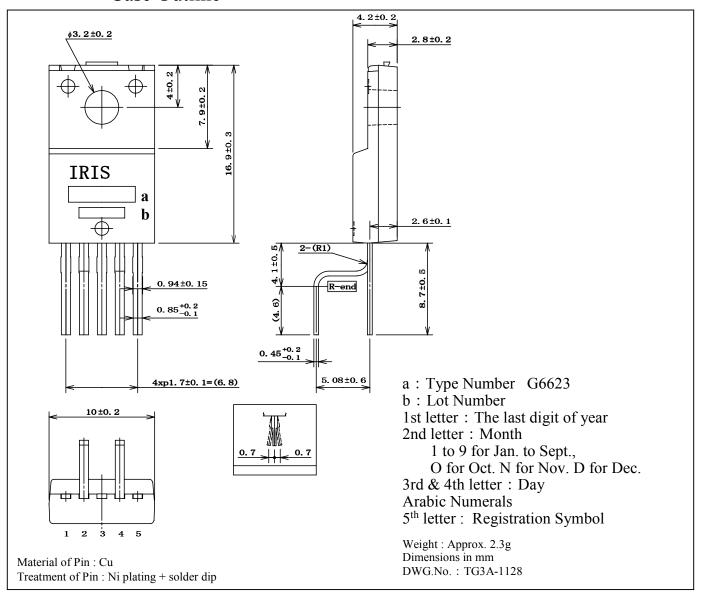

IRIS-G6623 Avalanche energy derating curve




IRIS-G6623 Transient thermal resistance curve

Block Diagram

Lead Assignments


Pin No.	Symbol	Description	Function
1	D	Drain Pin	MOSFET drain
2	S	Source Pin	MOSFET source
3	GND	Ground Pin	Ground
4	Vin	Power supply Pin	Input of power supply for control circuit
		Overcurrent / Feedback	Input of overcurrent detection
5	OCP/FB	Pin	signal / constant voltage control signal

Other Functions

O.V.P. – Overvoltage Protection Circuit

T.S.D. – Thermal Shutdown Circuit

Case Outline

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC FAX: (310) 252-7903

Visit us at www.irf.com for sales contact information.