

TPS562209, TPS563209

SLVSCM5-SEPTEMBER 2014

TPS56x209, 4.5V to 17 V Input, 2-A, 3-A Synchronous Step-Down Voltage Regulator in 6 pin SOT-23

Features

- TPS562209 2A converter with integrated 122mΩ and 72-mΩ FETs
- TPS563209 3A converter with integrated $68\text{-m}\Omega$ and 39-mΩ FETs
- D-CAP2™ Mode Control for Fast Transient Response
- Input Voltage Range: 4.5 V to 17 V
- Output Voltage Range: 0.76 V to 7 V
- 650 kHz Switching Frequency
- Low Shutdown Current Less than 10µA
- 1% Feedback Voltage Accuracy (25°C)
- Startup from Pre-Biased Output Voltage
- Cycle By Cycle Over-current Limit
- Hiccup-mode Under Voltage Protection
- Non-latch OVP, UVLO and TSD Protections
- Fixed Soft Start: 1.0ms

Applications

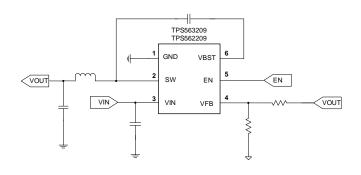
- Digital TV Power Supply
- High Definition Blu-ray Disc™ Players
- **Networking Home Terminal**
- Digital Set Top Box (STB)

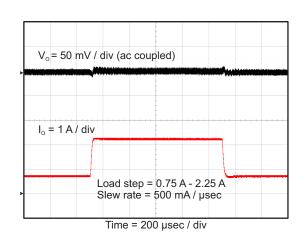
3 Description

The TPS562209 and TPS563209 are simple, easy-touse, 2-A and 3-A synchronous step-down converters in 6 pin SOT-23 package.

The devices are optimized to operate with minimum external component counts and also optimized to achieve low standby current.

These switch mode power supply (SMPS) devices employ D-CAP2™ mode control providing a fast transient response and supporting both low equivalent series resistance (ESR) output capacitors such as specialty polymer and ultra-low ESR ceramic capacitors with no external compensation components.


TPS562209 and TPS563209 always operate in continuous conduction mode, which reduces the output ripple voltage in light load compared to discontinous conduction mode. TPS56x209 are available in a 6-pin 1.6 x 2.9(mm) SOT (DDC) package, and specified from -40°C to 150°C of junction temperature.

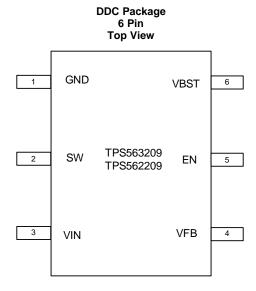

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)
TPS563209, TPS562209	SOT (6)	1.60 mm × 2.90 mm

(1) For all available packages, see the orderable addendum at the end of the datasheet.

Simplified Schematic and Transient Response

Table of Contents


1	Features 1	8.2 Functional Block Diagram1	10
2	Applications 1	8.3 Feature Description1	10
3	Description 1	8.4 Device Functional Modes1	12
4	Simplified Schematic and Transient Response 1	9 Application and Implementation 1	13
5	Revision History2	9.1 Application Information 1	13
6	Pin Configuration and Functions	9.2 Typical Applications1	13
7	Specifications	10 Power Supply Recommendations 2	20
•	7.1 Absolute Maximum Ratings	11 Layout 2	21
	7.2 Handling Ratings	11.1 Layout Guidelines	21
	7.3 Recommended Operating Conditions	11.2 Layout Example2	21
	7.4 Thermal Information	12 Device and Documentation Support 2	22
	7.5 Electrical Characteristics 5	12.1 Related Links	22
	7.6 Typical Characteristics TPS562209	12.2 Trademarks2	22
	7.7 Typical Characteristics TPS563209	12.3 Electrostatic Discharge Caution	22
8	Detailed Description	12.4 Glossary	22
•	8.1 Overview	13 Mechanical, Packaging, and Orderable Information	22

5 Revision History

DATE	REVISION	NOTES
September 2014	*	Initial release.

6 Pin Configuration and Functions

Pin Functions

PIN DESCRIPTION		DESCRIPTION
		DESCRIPTION
GND	1	Ground pin Source terminal of low-side power NFET as well as the ground terminal for controller circuit. Connect sensitive VFB to this GND at a single point.
SW	SW 2 Switch node connection between high-side NFET and low-side NFET.	
VIN	3	Input voltage supply pin. The drain terminal of high-side power NFET.
VFB	4	Converter feedback input. Connect to output voltage with feedback resistor divider.
EN 5 Enable input control. Active high and must be pulled up to enable the device.		Enable input control. Active high and must be pulled up to enable the device.
VBST	6	Supply input for the high-side NFET gate drive circuit. Connect 0.1 µF capacitor between VBST and SW pins.

www.ti.com

7 Specifications

7.1 Absolute Maximum Ratings

 $T_J = -40$ °C to 150°C (unless otherwise noted) ⁽¹⁾

		MIN	MAX	UNIT
	VIN, EN	-0.3	19	٧
	VBST	-0.3	25	٧
	VBST (10 ns transient)	-0.3	27.5	V
Input voltage range	VBST (vs SW)	-0.3	6.5	٧
	VFB,	-0.3	6.5	٧
	SW	-2	19	٧
	SW (10 ns transient)	-3.5	21	٧
Operating junction tem	perature, T _J	-40	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 Handling Ratings

			MIN	MAX	UNIT
T _{stg}	Storage temperature rang	e	-55	150	°C
V	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins ⁽¹⁾		2	kV
V _(ESD)	Electrostatic discharge	Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2)		500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

 $T_J = -40$ °C to 150°C (unless otherwise noted)

			MIN	MAX	UNIT
V_{IN}	Supply input voltage	upply input voltage range		17	V
		VBST	-0.1	23	
		VBST (10 ns transient)	-0.1	26	
		VBST(vs SW)	-0.1	6.0	
V_{I}	Input voltage range	EN	-0.1	17	V
		VFB	-0.1	5.5	
		SW	-1.8	17	
		SW (10 ns transient)	-3.5	20	
T _A	Operating free-air temperature		-40	85	°C

7.4 Thermal Information

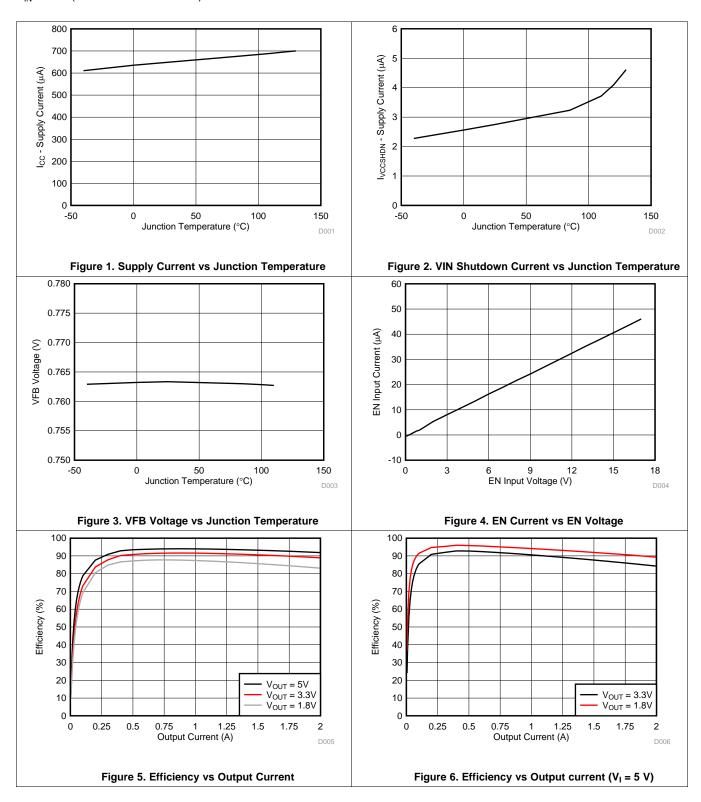
	THERMAL METRIC ⁽¹⁾	TPS562209	TPS563209	LINIT			
	THERMAL METRIC**	DDC (6 PINS)		UNIT			
$R_{\theta JA}$	Junction-to-ambient thermal resistance	109.2	87.9				
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	44.5	42.2				
$R_{\theta JB}$	Junction-to-board thermal resistance	57.3	13.6	°C/W			
ΨЈТ	Junction-to-top characterization parameter	2.3	1.9				
Ψ_{JB}	Junction-to-board characterization parameter	60.4	13.3				

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

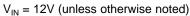
7.5 Electrical Characteristics

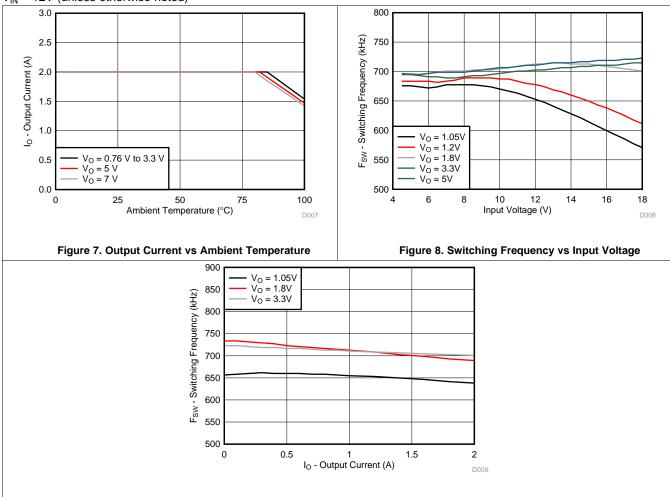
 $T_J = -40$ °C to 150°C, VIN = 12V (unless otherwise noted)


	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
SUPPLY	CURRENT						
I_{VIN}	Operating – non-switching supply current	V_{IN} current, $T_A = 25$ °C, $EN = 5$ V, $VFB = 0.8$ V		650	900	μA μA	
I _{VINSDN}	Shutdown supply current	V_{IN} current, $T_A = 25$ °C, $EN = 0$ V		3.0	10	μA	
LOGIC T	THRESHOLD						
V _{ENH}	EN high-level input voltage	EN	1.6			V	
V _{ENL}	EN low-level input voltage	EN			0.6	V	
R _{EN}	EN pin resistance to GND	V _{EN} = 12 V	225	450	900	kΩ	
V _{FB} VOL	TAGE AND DISCHARGE RESISTANCE						
V_{FBTH}	V _{FB} threshold voltage	$T_A = 25$ °C, $V_O = 1.05$ V, continuous mode operation	758	765	772	mV	
I _{VFB}	V _{FB} input current	V _{FB} = 0.8V, T _A = 25°C		0	±0.1	mA	
MOSFET							
		T _A = 25°C, V _{BST} – SW = 5.5 V (TPS562209)		122			
R _{DS(on)h}	High side switch resistance	T _A = 25°C, V _{BST} – SW = 5.5 V (TPS563209)		68		mΩ	
Б.		T _A = 25°C (TPS562209)		72			
R _{DS(on)I}	Low side switch resistance	T _A = 25°C (TPS563209)		39		mΩ	
CURREN	NT LIMIT						
	- (1)	DC current, VOUT = 1.05V , L1 = 2.2 µH	2.5	3.2	4.3		
l _{ocl}	Current limit ⁽¹⁾	DC current, VOUT = 1.05V , L1 = 1.5 µH	3.5	4.2	5.3	A	
THERMA	AL SHUTDOWN						
_		Shutdown temperature		155			
T _{SDN}	Thermal shutdown threshold ⁽¹⁾	Hysteresis		35	35 °C		
ON-TIME	TIMER CONTROL						
t _{ON}	On time	VIN = 12 V, VO = 1.05 V		150		ns	
t _{OFF(MIN)}	Minimum off time	T _A = 25°C, V _{FB} = 0.5 V		260	310	ns	
SOFT ST		1	L				
T _{ss}	Soft –start time	Internal soft-start time, T _A = 25°C	0.7	1.0	1.3	ms	
	UNDERVOLTAGE AND OVERVOLTAGE	- 11					
V _{OVP}	Output OVP threshold	OVP Detect		125%x Vfbth			
V_{UVP}	Output UVP threshold	Hiccup detect		65%xVf bth			
T _{HiccupO}	Hiccup Power On Time	Relative to soft start time		1		ms	
T _{HiccupOf}	Hiccup Power Off Time	Relative to soft start time		7		ms	
UVLO		-					
11//1.0	LIVI O throshold	Wake up VIN voltage	3.45	3.75	4.05	V	
UVLO	UVLO threshold	Hysteresis VIN voltage	0.13	0.32	0.55	V	

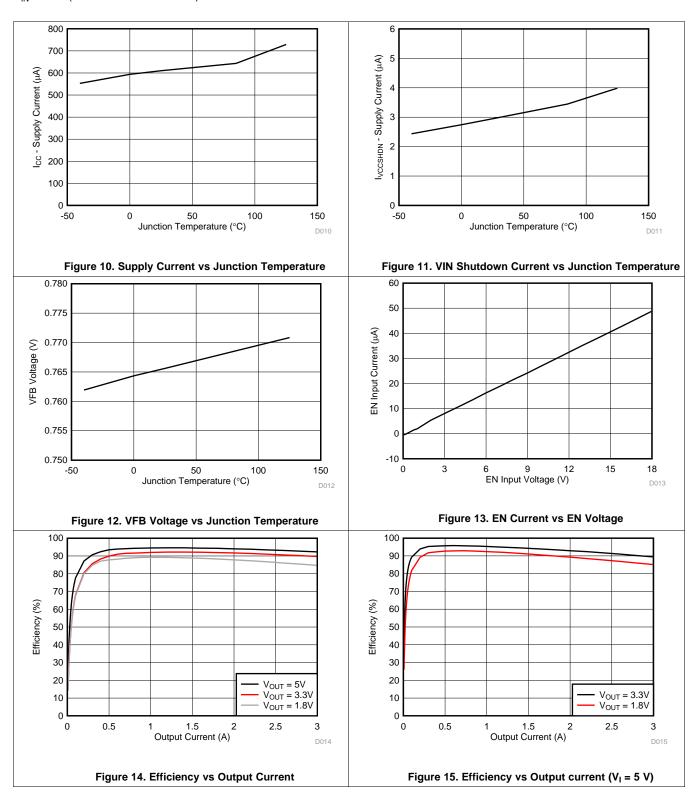
⁽¹⁾ Not production tested.

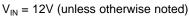
www.ti.com

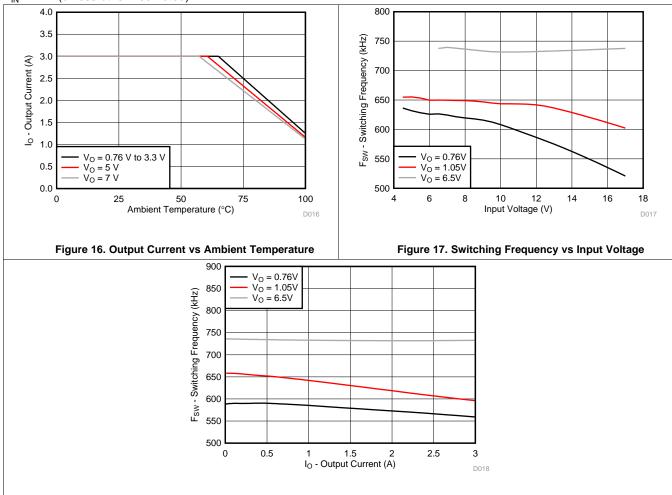

7.6 Typical Characteristics TPS562209


 $V_{IN} = 12V$ (unless otherwise noted)

Typical Characteristics TPS562209 (continued)




7.7 Typical Characteristics TPS563209


 $V_{IN} = 12V$ (unless otherwise noted)

Typical Characteristics TPS563209 (continued)

8 Detailed Description

8.1 Overview

The TPS562209 and TPS563209 are 2-A and 3-A synchronous step-down converters, respectively. The proprietary D-CAP2™ mode control supports low ESR output capacitors such as specialty polymer capacitors and multi-layer ceramic capacitors without complex external compensation circuits. The fast transient response of D-CAP2TM mode control can reduce the output capacitance required to meet a specific level of performance.

8.2 Functional Block Diagram

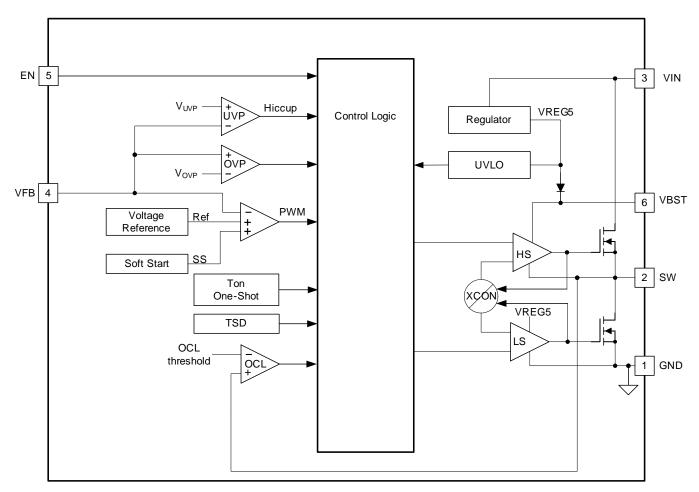


Figure 19. TPS56x209

8.3 Feature Description

8.3.1 The Adaptive On-Time Control and PWM Operation

The main control loop of the TPS56x209 are adaptive on-time pulse width modulation (PWM) controller that supports a proprietary D-CAP2™ mode control. The D-CAP2™ mode control combines adaptive on-time control with an internal compensation circuit for pseudo-fixed frequency and low external component count configuration with both low ESR and ceramic output capacitors. It is stable even with virtually no ripple at the output.

Feature Description (continued)

At the beginning of each cycle, the high-side MOSFET is turned on. This MOSFET is turned off after internal one shot timer expires. This one shot duration is set proportional to the converter input voltage, VIN, and inversely proportional to the output voltage, VO, to maintain a pseudo-fixed frequency over the input voltage range, hence it is called adaptive on-time control. The one-shot timer is reset and the high-side MOSFET is turned on again when the feedback voltage falls below the reference voltage. An internal ramp is added to reference voltage to simulate output ripple, eliminating the need for ESR induced output ripple from D-CAP2TM mode control.

8.3.2 Soft Start and Pre-Biased Soft Start

The TPS562209 and TPS563209 have an internal 1.0ms soft-start. When the EN pin becomes high, the internal soft-start function begins ramping up the reference voltage to the PWM comparator.

If the output capacitor is pre-biased at startup, the devices initiate switching and start ramping up only after the internal reference voltage becomes greater than the feedback voltage V_{FB} . This scheme ensures that the converters ramp up smoothly into regulation point.

8.3.3 Current Protection

The output over-current limit (OCL) is implemented using a cycle-by-cycle valley detect control circuit. The switch current is monitored during the OFF state by measuring the low-side FET drain to source voltage. This voltage is proportional to the switch current. To improve accuracy, the voltage sensing is temperature compensated. During the on time of the high-side FET switch, the switch current increases at a linear rate determined by Vin, Vout, the on-time and the output inductor value.

During the on time of the low-side FET switch, this current decreases linearly. The average value of the switch current is the load current lout. If the monitored current is above the OCL level, the converter maintains low-side FET on and delays the creation of a new set pulse, even the voltage feedback loop requires one, until the current level becomes OCL level or lower. In subsequent switching cycles, the on-time is set to a fixed value and the current is monitored in the same manner. If the over current condition exists consecutive switching cycles, the internal OCL threshold is set to a lower level, reducing the available output current. When a switching cycle occurs where the switch current is not above the lower OCL threshold, the counter is reset and the OCL threshold is returned to the higher value.

There are some important considerations for this type of over-current protection. The load current is higher than the over-current threshold by one half of the peak-to-peak inductor ripple current. Also, when the current is being limited, the output voltage tends to fall as the demanded load current may be higher than the current available from the converter. This may cause the output voltage to fall. When the VFB voltage falls below the UVP threshold voltage, the UVP comparator detects it. And then, the device will shut down after the UVP delay time (typically 14µs) and re-start after the hiccup time (typically 12ms).

When the over current condition is removed, the output voltage returns to the regulated value.

8.3.4 Over Voltage Protection

TPS562209 and TPS563209 detect over voltage condition by monitoring the feedback voltage (VFB). When the feedback voltage becomes higher than 125% of the target voltage, the OVP comparator output goes high and both the high-side MOSFET and the low-side MOSFET turn off. This function is non-latch operation.

8.3.5 UVLO Protection

Under voltage lock out protection (UVLO) monitors the device input voltage. When the voltage is lower than UVLO threshold voltage, the device is shut off. This protection is non-latching.

8.3.6 Thermal Shutdown

The device monitors the temperature of itself. If the temperature exceeds the threshold value (typically 155°C), the device is shut off. This is a non-latch protection.

Copyright © 2014, Texas Instruments Incorporated

TEXAS INSTRUMENTS

8.4 Device Functional Modes

8.4.1 Normal Operation

When the input voltage is above the UVLO threshold and the EN voltage is above the enable threshold, the TPS562209 and TPS563209 can operate in their normal switching modes. Normal continuous conduction mode (CCM) occurs when the minimum switch current is above 0 A. In CCM, the TPS562209 and TPS563209 operate at a quasi-fixed frequency of 650 kHz.

8.4.2 Forced CCM Operation

When the TPS562209 and TPS563209 are in the normal CCM operating mode and the switch current falls below 0 A, the TPS562209 and TPS563209 begin operating in forced CCM.

8.4.3 Standby Operation

When the TPS562209 and TPS563209 are operating in either normal CCM or forced CCM, they may be placed in standby by asserting the EN pin low.

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The TPS562209 and TPS563209 are typically used as step down converters, which convert a voltage from 4.5V - 17V to a lower voltage. Webench software is available to aid in the design and analysis of circuits

9.2 Typical Applications

9.2.1 TPS562209 4.5-V to 17-V Input, 1.05-V Output Converter

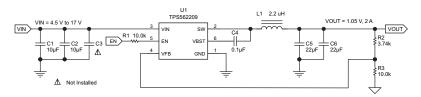


Figure 20. TPS562209 1.05V/2A Reference Design

9.2.1.1 Design Requirements

To begin the design process, you must know a few application parameters:

Table 1. Design Parameters

PARAMETER	VALUE
Input voltage range	4.5 V to 17V
Output voltage	1.05V
Output current	2A
Output voltage ripple	20mVpp

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Output Voltage Resistors Selection

The output voltage is set with a resistor divider from the output node to the VFB pin. It is recommended to use 1% tolerance or better divider resistors. Start by using Equation 1 to calculate V_{OUT} .

To improve efficiency at very light loads consider using larger value resistors, too high of resistance will be more susceptible to noise and voltage errors from the VFB input current will be more noticeable.

$$V_{OUT} = 0.765 \times \left(1 + \frac{R2}{R3}\right) \tag{1}$$

9.2.1.2.2 Output Filter Selection

The LC filter used as the output filter has double pole at:

$$F_{P} = \frac{1}{2\pi\sqrt{L_{OUT} \times C_{OUT}}}$$
 (2)

At low frequencies, the overall loop gain is set by the output set-point resistor divider network and the internal gain of the device. The low frequency phase is 180 degrees. At the output filter pole frequency, the gain rolls off at a −40 dB per decade rate and the phase drops rapidly. D-CAP2™ introduces a high frequency zero that reduces the gain roll off to −20 dB per decade and increases the phase to 90 degrees one decade above the zero frequency. The inductor and capacitor for the output filter must be selected so that the double pole of Equation 2 is located below the high frequency zero but close enough that the phase boost provided be the high frequency zero provides adequate phase margin for a stable circuit. To meet this requirement use the values recommended in Table 2.

OUTPUT L1 (µH) R2 R3 **VOLTAGE** $C5 + C6 (\mu F)$ $(k\Omega)$ $(k\Omega)$ MIN **TYP** MAX (V) 3.09 10.0 4.7 20 - 68 1 1.5 2.2 1.05 3.74 10.0 1.5 2.2 4.7 20 - 68 1.2 5.76 10.0 1.5 2.2 4.7 20 - 68 1.5 9.53 10.0 1.5 2.2 4.7 20 - 68 1.8 13.7 10.0 1.5 4.7 20 - 68 2.2 22.6 10.0 2.2 4.7 2.5 3.3 20 - 68 3.3 33.2 10.0 2.2 3.3 4.7 20 - 68 5 54.9 10.0 3.3 4.7 4.7 20 - 68 4.7 4.7 6.5 75 10.0 3.3 20 - 68

Table 2. Recommended Component Values

The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 3, Equation 4 and Equation 5. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current.

Use 650 kHz for f_{SW} . Make sure the chosen inductor is rated for the peak current of Equation 4 and the RMS current of Equation 5.

$$II_{P-P} = \frac{V_{OUT}}{V_{IN(MAX)}} \times \frac{V_{IN(MAX)} - V_{OUT}}{L_O \times f_{SW}}$$
(3)

$$Il_{\mathsf{PEAK}} = I_{\mathsf{O}} + \frac{Il_{\mathsf{P-P}}}{2} \tag{4}$$

$$I_{LO(RMS)} = \sqrt{I_0^2 + \frac{1}{12}II_{P-P}^2}$$
 (5)

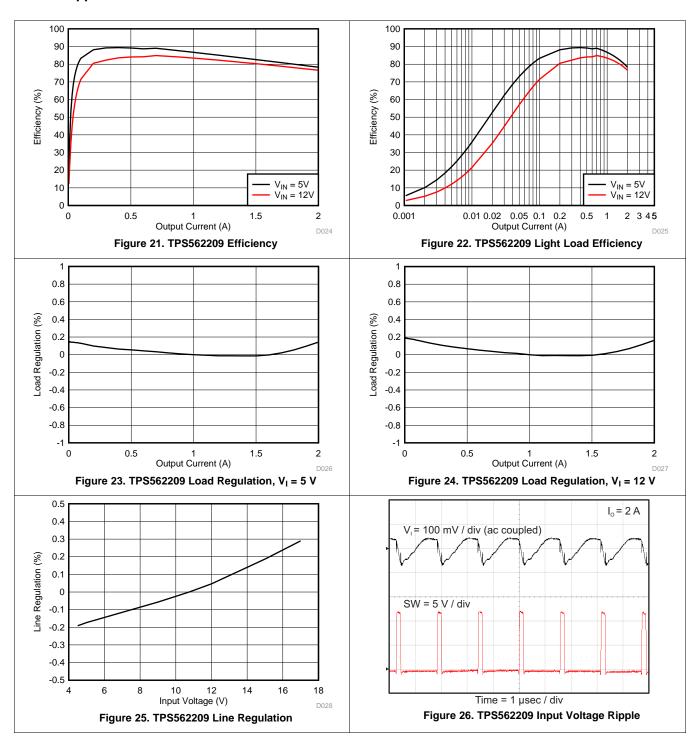
For this design example, the calculated peak current is 2.34 A and the calculated RMS current is 2.01 A. The inductor used is a TDK CLF7045T-2R2N with a peak current rating of 5.5-A and an RMS current rating of 4.3-A

The capacitor value and ESR determines the amount of output voltage ripple. The TPS562209 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 20μF to 68μF. Use Equation 6 to determine the required RMS current rating for the output capacitor.

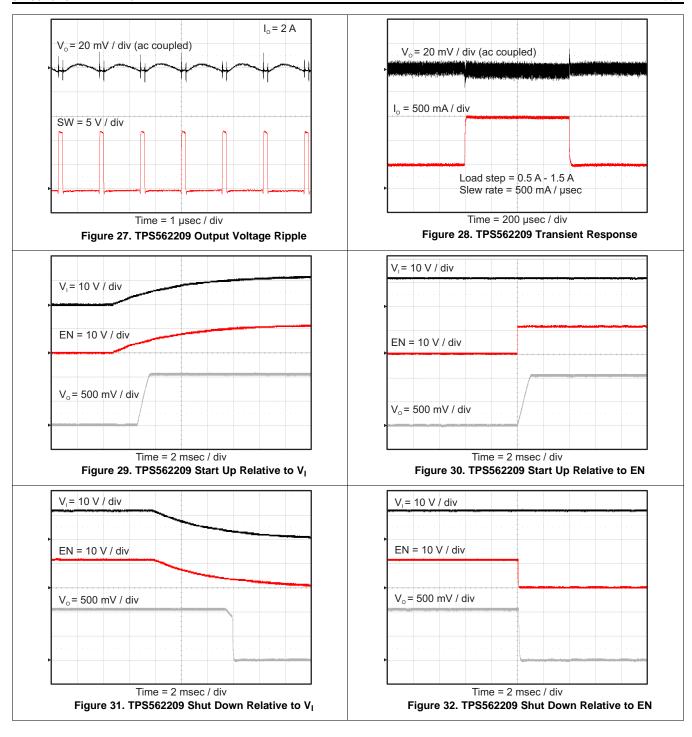
$$I_{CO(RMS)} = \frac{V_{OUT} \times (V_{IN} - V_{OUT})}{\sqrt{12} \times V_{IN} \times L_O \times f_{SW}}$$
(6)

For this design two TDK C3216X5R0J226M 22 μ F output capacitors are used. The typical ESR is 2 m Ω each. The calculated RMS current is 0.199A and each output capacitor is rated for 4A.

9.2.1.2.3 Input Capacitor Selection


The TPS562209 and TPS563209 require an input decoupling capacitor and a bulk capacitor is needed depending on the application. A ceramic capacitor over 10 μ F is recommended for the decoupling capacitor. An additional 0.1 μ F capacitor (C3) from pin 3 to ground is optional to provide additional high frequency filtering. The capacitor voltage rating needs to be greater than the maximum input voltage.

9.2.1.2.4 Bootstrap Capacitor Selection


A 0.1µF ceramic capacitor must be connected between the VBST to SW pin for proper operation. It is recommended to use a ceramic capacitor.

9.2.1.3 Application Curves

9.2.2 TPS563209 4.5-V to 17-V Input, 1.05-V Output Converter

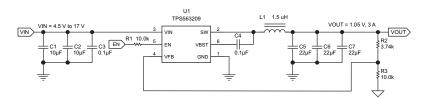


Figure 33. TPS563209 1.05V/3A Reference Design

9.2.2.1 Design Requirements

To begin the design process, the user must know a few application parameters:

Table 3. Design Parameters

PARAMETER	VALUE
Input voltage range	4.5 V to 17V
Output voltage	1.05V
Output current	3A
Output voltage ripple	20mVpp

9.2.2.2 Detailed Design Procedures

The detailed design procedure for TPS563209 is the same as for TPS562209 except for inductor selection.

9.2.2.2.1 Output Filter Selection

Table 4. Recommended Component Values

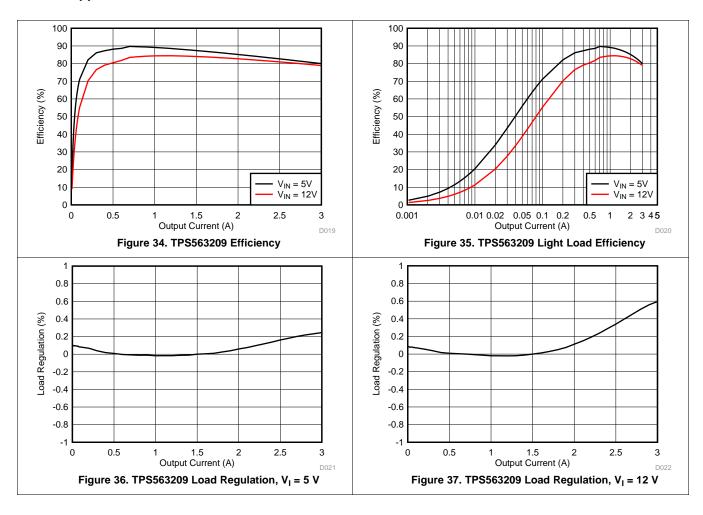
OUTPUT	R2	R3		L1 (µH)		C5 +C6 + C7	
VOLTAGE (V)	(kΩ)	(kΩ)	MIN	TYP	MAX	(μF)	
1	3.09	10.0	1.0	1.5	4.7	20 - 68	
1.05	3.74	10.0	1.0	1.5	4.7	20 - 68	
1.2	5.76	10.0	1.0	1.5	4.7	20 - 68	
1.5	9.53	10.0	1.0	1.5	4.7	20 - 68	
1.8	13.7	10.0	1.5	2.2	4.7	20 - 68	
2.5	22.6	10.0	1.5	2.2	4.7	20 - 68	
3.3	33.2	10.0	1.5	2.2	4.7	20 - 68	
5	54.9	10.0	2.2	3.3	4.7	20 - 68	
6.5	75	10.0	2.2	3.3	4.7	20 - 68	

The inductor peak-to-peak ripple current, peak current and RMS current are calculated using Equation 7, Equation 8 and Equation 9. The inductor saturation current rating must be greater than the calculated peak current and the RMS or heating current rating must be greater than the calculated RMS current. Use 650 kHz for f_{SW} .

Use 650 kHz for f_{SW} . Make sure the chosen inductor is rated for the peak current of Equation 8 and the RMS current of Equation 9.

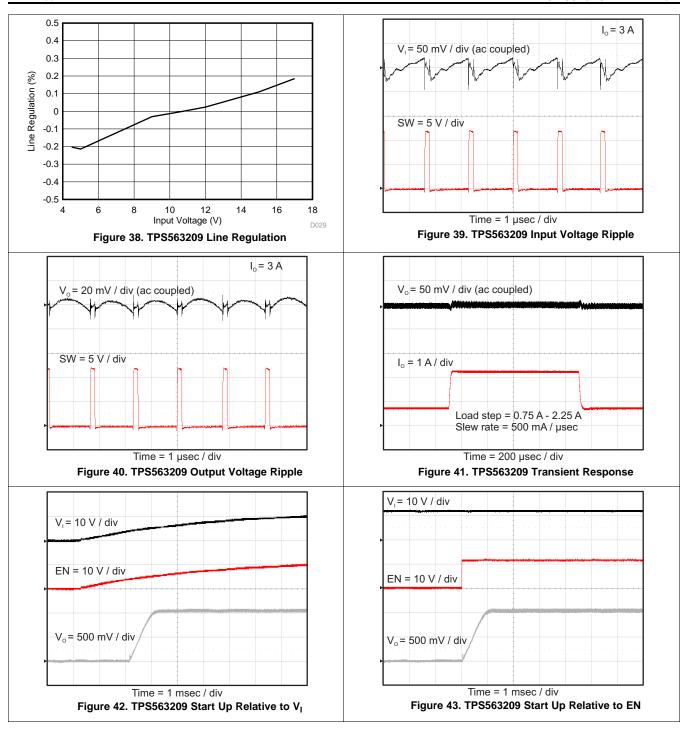
$$Il_{P-P} = \frac{V_{OUT}}{V_{IN(MAX)}} \times \frac{V_{IN(MAX)} - V_{OUT}}{L_O \times f_{SW}}$$
(7)

$$Il_{PEAK} = I_O + \frac{Il_{P-P}}{2} \tag{8}$$

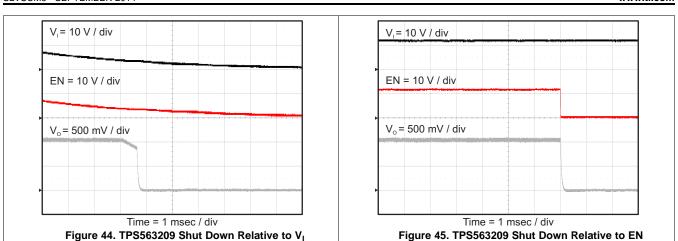

$$I_{LO(RMS)} = \sqrt{I_O^2 + \frac{1}{12}II_{P-P}^2}$$
 (9)

For this design example, the calculated peak current is 3.505 A and the calculated RMS current is 3.014 A. The inductor used is a TDK CLF7045T-1R5N with a peak current rating of 7.3-A and an RMS current rating of 4.9-A

The capacitor value and ESR determines the amount of output voltage ripple. The TPS563209 is intended for use with ceramic or other low ESR capacitors. Recommended values range from 20μF to 68μF. Use Equation 6 to determine the required RMS current rating for the output capacitor.


For this design three TDK C3216X5R0J226M 22 μ F output capacitors are used. The typical ESR is 2 m Ω each. The calculated RMS current is 0.292A and each output capacitor is rated for 4A.

9.2.2.3 Application Curves



www.ti.com

10 Power Supply Recommendations

The TPS562209 and TPS563209 are designed to operate from input supply voltage in the range of 4.5V to 17V. Buck converters require the input voltage to be higher than the output voltage for proper operation. The maximum recommended operating duty cycle is 65%. Using that criteria, the minimum recommended input voltage is $V_{\rm O}$ / 0.65.

0 Submit Documentation Feedback

NSTRUMENTS

11 Layout

11.1 Layout Guidelines

- 1. VIN and GND traces should be as wide as possible to reduce trace impedance. The wide areas are also of advantage from the view point of heat dissipation.
- 2. The input capacitor and output capacitor should be placed as close to the device as possible to minimize trace impedance.
- 3. Provide sufficient vias for the input capacitor and output capacitor.
- 4. Keep the SW trace as physically short and wide as practical to minimize radiated emissions.
- 5. Do not allow switching current to flow under the device.
- 6. A separate VOUT path should be connected to the upper feedback resistor.
- 7. Make a Kelvin connection to the GND pin for the feedback path.
- 8. Voltage feedback loop should be placed away from the high-voltage switching trace, and preferably has ground shield.
- 9. The trace of the VFB node should be as small as possible to avoid noise coupling.
- 10. The GND trace between the output capacitor and the GND pin should be as wide as possible to minimize its trace impedance.

11.2 Layout Example

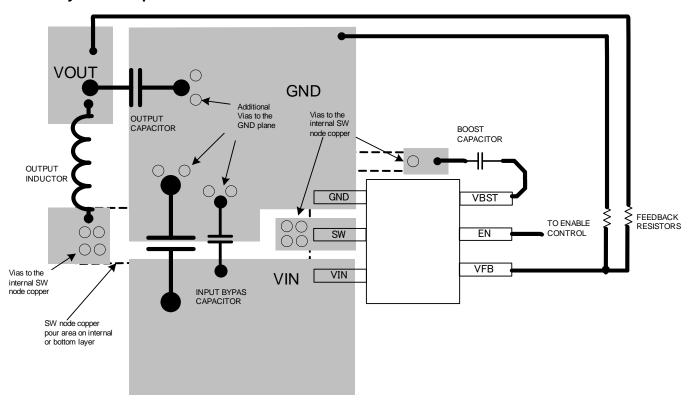


Figure 46. TPS562209 and TPS563209 Layout

12 Device and Documentation Support

12.1 Related Links

The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy.

Table 5. Related Links

PARTS	PRODUCT FOLDER	SAMPLE & BUY	TECHNICAL DOCUMENTS	TOOLS & SOFTWARE	SUPPORT & COMMUNITY		
TPS563209	Click here	Click here	Click here	Click here	Click here		
TPS562209	Click here	Click here	Click here	Click here	Click here		

12.2 Trademarks

D-CAP2 is a trademark of Texas Instruments. Blu-ray Disc is a trademark of Blu-ray Disc Association.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

22

Product Folder Links: TPS562209 TPS563209

29-Mar-2016

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TPS562209DDCR	ACTIVE	SOT	DDC	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	209	Samples
TPS562209DDCT	ACTIVE	SOT	DDC	6	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	209	Samples
TPS563209DDCR	ACTIVE	SOT	DDC	6	3000	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	309	Samples
TPS563209DDCT	ACTIVE	SOT	DDC	6	250	Green (RoHS & no Sb/Br)	CU SN	Level-1-260C-UNLIM	-40 to 125	309	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

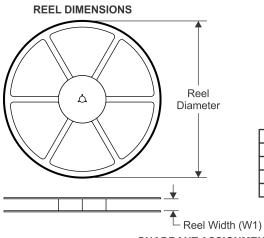
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

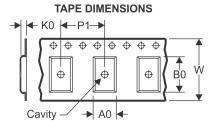
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

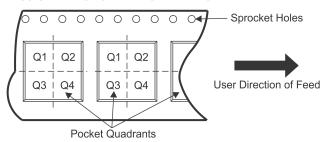
29-Mar-2016


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

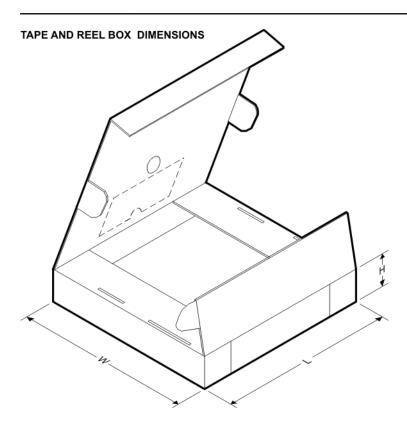

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 15-Oct-2014


TAPE AND REEL INFORMATION

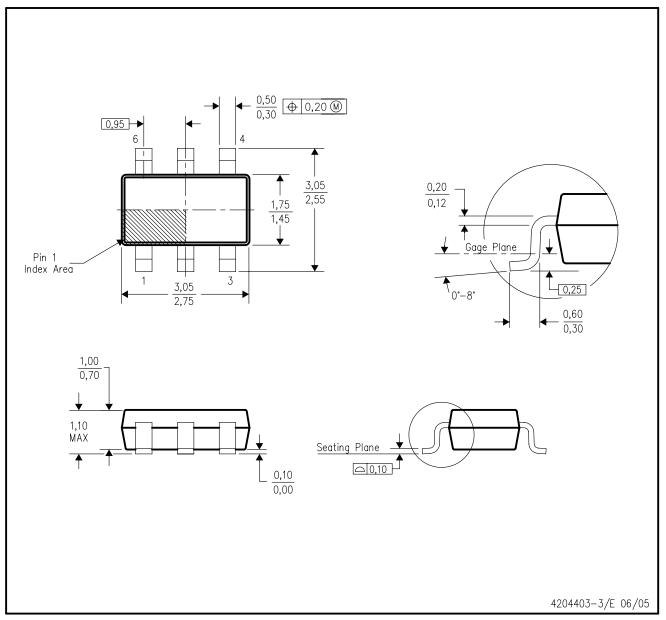
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS562209DDCR	SOT	DDC	6	3000	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3
TPS562209DDCT	SOT	DDC	6	250	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3
TPS563209DDCR	SOT	DDC	6	3000	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3
TPS563209DDCT	SOT	DDC	6	250	180.0	9.5	3.17	3.1	1.1	4.0	8.0	Q3

www.ti.com 15-Oct-2014



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS562209DDCR	SOT	DDC	6	3000	184.0	184.0	19.0
TPS562209DDCT	SOT	DDC	6	250	184.0	184.0	19.0
TPS563209DDCR	SOT	DDC	6	3000	184.0	184.0	19.0
TPS563209DDCT	SOT	DDC	6	250	184.0	184.0	19.0

DDC (R-PDSO-G6)

PLASTIC SMALL-OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-193 variation AA (6 pin).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity